

Zulassungsstelle für Bauprodukte und Bauarten Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum:

Geschäftszeichen:

16.05.2012

156-1.9.1-681#11

Zulassungsnummer: Z-9.1-681

Antragsteller: Eurotec GmbH Unter dem Hofe 5 58099 Hagen Geltungsdauer

vom: 1. April 2012

bis: 1. April 2017

Zulassungsgegenstand:

KonstruX Vollgewindeschrauben als Holzverbindungsmittel

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst zwölf Seiten und vierzehn Anlagen. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-9.1-681 vom 10. August 2010. Der Gegenstand ist erstmals am 26. März 2007 allgemeine bauaufsichtlich zugelassen worden.

Deutsches Institut

Seite 2 von 12 | 16. Mai 2012

für Bautechnik

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies ertodern.

Z38512.12 1.9.1-681#11

Seite 3 von 12 | 16. Mai 2012

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Die Vollgewindeschrauben KonstruX sind Holzverbindungsmittel aus verzinktem Kohlenstoffstahl. Sie dienen zum Anschluss von Holzbauteilen aus Vollholz (Nadelholz) und Brettschichtholz, aus allgemein bauaufsichtlich zugelassenem Furnierschichtholz, Brett- oder Balkenlagenholz, aus Holzwerkstoffen oder von Stahlteilen an Holzbauteile aus Vollholz (Nadelholz) und Brettschichtholz oder aus Furnierschichtholz, Brett- oder Balkenlagenholz. Sie dienen weiterhin zur Erhöhung der Tragfähigkeit von Holzbauteilen rechtwinklig zur Faserrichtung.

1.2 Anwendungsbereich

Die Vollgewindeschrauben KonstruX dürfen als Holzverbindungsmittel für tragende Holzkonstruktionen angewendet werden, die nach DIN 1052¹ zu bemessen und auszuführen sind, soweit in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes bestimmt ist.

Die Bemessung darf auch nach DIN EN 1995-1-1² in Verbindung mit DIN EN 1995-1-1/NA³ erfolgen, soweit nachstehend nichts anderes bestimmt ist.

Die Anwendbarkeit der Normen richtet sich nach den Bauordnungen und den Technischen Baubestimmungen der Länder.

Die Schrauben dürfen nur für vorwiegend ruhende Belastungen (siehe DIN 1055-3:2006-03⁴, Abschnitt 3) verwendet werden.

Die Schrauben dürfen unter einem Winkel $\alpha \ge 30^{\circ}$ (α = Winkel zwischen Schraubenachse und Holzfaserrichtung) in Hirnholz eingedreht werden.

Für den Anwendungsbereich der KonstruX Vollgewindeschrauben je nach den Umweltbedingungen gilt die Norm DIN 1052:2008-12¹ Abschnitt 6.3 mit Tabelle 2 oder die Norm DIN EN 1995-1-1² Abschnitt 4.2 mit Tabelle 4.1 in Verbindung mit DIN EN 1995-1-1/NA³. Die Schrauben dürfen im Anwendungsbereich nach DIN 1052:2008-12 Abschnitt 6.3, Tabelle 2, Spalte 3 bzw. nach DIN EN 1995-1-1:2010-12 Abschnitt 4.2 mit Tabelle 4.1, Spalte 3 nicht verwendet werden.

Die Schrauben dürfen für Verbindungen von Holzbauteilen nach allgemeinen bauaufsichtlichen Zulassungen verwendet werden, wenn nach der jeweiligen für das Holzbauteil erteilten allgemeinen bauaufsichtlichen Zulassung die Herstellung von Holzverbindungen mit allgemein bauaufsichtlich zugelassenen Schrauben zulässig ist.

Mit KonstruX Vollgewindeschrauben dürfen die nachfolgend genannten Holzwerkstoffplatten an Holzbauteile nach Abschnitt 1.1 angeschlossen werden:

 Sperrholz nach DIN EN 13986⁵ (DIN EN 636⁶) und DIN V 20000-1⁷ oder nach allgemeiner bauaufsichtlicher Zulassung,

1	DIN 1052:2008-12	Entwurf, Berechnung und Bemessung von Holzbauwerken; Allgemeine
2	DIN EN 1995-1-1:2010-12	Bemessungsregeln und Bemessungsregeln für den Hochbau Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau
3	DIN EN 1995-1-1/NA:2010-12	
4	DIN 1055-3:2006-03	Einwirkungen auf Tragwerke - Teil 3: Eigen- und Nutzlasten für Hochbauten
5	DIN EN 13986:2005-03	Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung
6	DIN EN 636:2003-11	Sperrholz - Anforderungen
7	DIN V 20000-1:2005-12	Anwendung von Bauprodukten in Bauwerken - Teil 1: Holzwerkstoffe Deutsches fastitut
		für Bautechnik

Seite 4 von 12 | 16. Mai 2012

- Kunstharzgebundene Spanplatten nach DIN EN 13986 (DIN EN 3128) und DIN V 20000-1 oder nach allgemeiner bauaufsichtlicher Zulassung,
- OSB-Platten (Oriented Strand Board) des Typs OSB/3 und OSB/4 nach DIN EN 13986 (DIN EN 300⁹) und DIN V 20000-1 oder OSB-Platten nach allgemeiner bauaufsichtlicher Zulassung,
- Faserplatten nach DIN EN 13986 (DIN EN 622-2¹⁰ und 622-3¹¹) und DIN V 20000-1 bzw. nach allgemeiner bauaufsichtlicher Zulassung, Mindestrohdichte 650 kg/m³,
- Zementgebundene Spanplatten nach allgemeiner bauaufsichtlicher Zulassung und
- Gipsgebundene Spanplatten nach allgemeiner bauaufsichtlicher Zulassung.

Die KonstruX Vollgewindeschrauben dürfen jedoch nicht für Anschlüsse an Holzwerkstoffplatten eingesetzt werden.

In Holzbauteile aus Vollholz, Brettschichtholz und aus Furnierschichtholz, Brett- oder Balkenlagenholz dürfen Schrauben mit einem Gewindeaußendurchmesser $d_1 \geq 8,0$ mm nur bei Verwendung der Holzarten Fichte, Kiefer oder Tanne eingeschraubt werden. Dies gilt sinngemäß auch für das Einschrauben in Holzbauteile nach allgemeinen bauaufsichtlichen Zulassungen.

2 Bestimmungen für die Vollgewindeschrauben KonstruX

2.1 Eigenschaften und Zusammensetzung

- 2.1.1 Form, Maße und Abmaße der Schrauben müssen den Anlagen 1 bis 10 entsprechen.
- 2.1.2 Die Schrauben müssen aus gehärtetem Kohlenstoffstahl nach der beim Deutschen Institut für Bautechnik hinterlegten E.u.r.o. Tec Werksnorm hergestellt werden.
- 2.1.3 Die Schrauben müssen als charakteristische Werte der Zugtragfähigkeit R_{t,u,k} mindestens die Werte der Tabelle 3 aufweisen.
- 2.1.4 Die Schrauben müssen als charakteristische Werte des Bruchdrehmomentes M_{t,u,k} mindestens die Werte der Tabelle 1 aufweisen.

Tabelle 1: Charakteristische Werte des Bruchdrehmomentes M_{t,u,k}

Gewindeaußendurchmesser d ₁ mm	Charakteristische Werte des Bruchdrehmomentes M _{t,u,k} Nm
6,5	16,0
8,0	30,0
10,0	36,0

2.1.5 Die KonstruX Vollgewindeschrauben müssen ohne abzubrechen um einem Winkel von $\alpha \ge (45/d_1^{0.7} + 20)$ Grad biegbar sein (d_1 = Gewindeaußendurchmesser in part).

Die Dicke der galvanischen Verzinkung beträgt 7 um.

DIN EN 312:2003-11

Spanplatten - Anforderungen

DIN EN 300:1997-06

DIN EN 622-2:2003-10

DIN EN 622-3:2003-10

Spanplatten - Anforderungen

Platten aus langen, schlanken, ausgerichteten Spänen (OSB) - Definitionen Klassifizierung und Anforderungen

Faserplatten - Anforderungen - Teil 2: Anforderungen an harte Platten

Faserplatten - Anforderungen - Teil 3: Anforderungen an mittelharte Platten

700540 40

Deutsches Institut für Bautechnik

Seite 5 von 12 | 16. Mai 2012

2.2 Kennzeichnung

Die Verpackung der Schrauben oder der Lieferschein der Schrauben muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Darüber hinaus muss die Verpackung oder der Lieferschein folgende Angaben enthalten:

- Bezeichnung des Zulassungsgegenstandes "Vollgewindeschrauben KonstruX"
- Schraubengröße.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der Schrauben mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung der Schrauben nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der Schrauben eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

- Der Rohdraht ist mindestens mit Werkszeugnis "2.2" nach DIN EN 10204¹², zu beziehen; anhand der Prüfbescheinigung ist die Einhaltung der Anforderungen nach Abschnitt 2.1.2 zu überprüfen.
- Prüfung der Zugtragfähigkeit und des Bruchdrehmomentes der Schrauben, auf eine dieser Prüfungen darf verzichtet werden, wenn in Abstimmung mit der Überwachungsstelle aus der durchgeführten Prüfung auch auf die Einhaltung der Anforderungen an die nicht geprüfte Eigenschaft geschlossen werden kann.
- Biegeprüfung mit einem Biegewinkel α ≥ (45/d₁^{0,7}+20) Grad (d₁ = Gewindeaußendurchmesser in mm).
- Prüfung der Maße der Schrauben.

Weitere Einzelheiten der Eigenüberwachung sind im Überwachungsvertrag

Deutsches Institut
für Bautechnik

Seite 6 von 12 | 16. Mai 2012

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Gegenstand der Prüfungen
- Art der Kontrolle oder Prüfungen
- Datum der Herstellung
- Datum und Ergebnis der Kontrollen und Prüfungen und, soweit erforderlich, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch einmal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Schrauben durchzuführen und können auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle. Es sind mindestens das Bruchdrehmoment, der Biegewinkel und die Maße der Schrauben zu prüfen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für die Bemessung

3.1 Allgemeines

Für den Entwurf und die Bemessung von Holzkonstruktionen unter Verwendung der Vollgewindeschrauben KonstruX nach Abschnitt 2.1.1 gilt DIN 1052, soweit im Folgenden nichts anderes bestimmt ist. Für die Holzbauteile sind gegebenenfalls die allgemeinen bauaufsichtlichen Zulassungen zu beachten.

Die Bemessung darf unter Berücksichtigung der entsprechenden nachstehenden Bestimmungen auch nach DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA erfolgen.

Einschraubtiefen s $< 4 \cdot d_1$ (d_1 = Gewindeaußendurchmesser) dürfen nicht in Rechnung gestellt werden.

Tragende Verbindungen mit Vollgewindeschrauben KonstruX müssen minderens Schrauben enthalten.

Deutsches Institut
für Bautechnik

Z38512.12 1.9.1-681#11

Allgemeine bauaufsichtliche Zulassung

Nr. Z-9.1-681

Seite 7 von 12 | 16. Mai 2012

Der Rechenwert des Verschiebungsmoduls K_{ser} des Gewindeteils beträgt für den Gebrauchstauglichkeitsnachweis unabhängig vom Winkel zwischen Schraubenachse und Holzfaserrichtung für in Achsrichtung beanspruchte Vollgewindeschrauben KonstruX je Schnittufer:

$$K_{\text{ser}} = 780 \cdot I_{\text{ef}}^{0,4} \cdot d_1^{0,2} \quad \text{in N/mm}$$
 (1)

Hierin bedeuten:

l_{ef} = jeweilige Gewindelänge in den beiden Einzelquerschnitten in mm (siehe l₁ und l₂ in den Anlagen 11 und 12),

d₁ = Gewindeaußendurchmesser der Schraube in mm,

Der Rechenwert des Verschiebungsmoduls für den Tragfähigkeitsnachweis ist zu 2/3 des Rechenwertes des Verschiebungsmoduls für den Gebrauchstauglichkeitsnachweis anzunehmen.

3.2 Bemessung nach DIN 1052 oder nach DIN EN 1995-1-1 in Verbindung DIN EN 1995-1-1/NA)

3.2.1 Beanspruchung rechtwinklig zur Schraubenachse

Als Schraubennenndurchmesser d bzw. wirksamer Durchmesser d_{ef} darf bei der Bemessung nach DIN 1052 oder nach DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA der Gewindeaußendurchmesser d_1 nach den Anlagen 1 bis 10 in Rechnung gestellt werden.

Für die charakteristischen Werte des Fließmoments M_{v,k} der Schrauben gilt Tabelle 2.

Tabelle 2: Charakteristische Werte des Fließmoments M_{v,k}

Gewindeaußendurchmesser d ₁ mm	Charakteristische Werte des Fließmoments M _{y,k} Nm
6,5	10,0
8,0	25,0
10,0	30,0

3.2.2 Beanspruchung in Richtung der Schraubenachse

3.2.2.1 Beanspruchung auf Herausziehen

Der charakteristische Wert des Ausziehwiderstandes für unter einem Winkel $30^{\circ} \le \alpha \le 90^{\circ}$ (α = Winkel zwischen Schraubenachse und Holzfaserrichtung) eingedrehte Schrauben darf mit:

$$R_{ax,k} = f_{1,\alpha,k} \cdot I_{ef} \cdot d_1 \quad (in N)$$
 (2)

in Rechnung gestellt werden.

Hierin bedeuten:

 $f_{1,\alpha,k}$ = charakteristischer Wert des Ausziehparameters in Abhängigkeit vom Winkel α in N/mm²

$$f_{1,\alpha,k} = \frac{80 \cdot 10^{-6} \cdot \rho_k^2}{\sin^2 \alpha + \frac{4}{3} \cos^2 \alpha}$$
 (3)

d₁ = Gewindeaußendurchmesser der Schraube in mm nach den Anlagen 1 bis 10

l_{ef} = Einschraubtiefe in mm, Einschraubtiefen l_{ef} kleiner als 4·d₁ dürfen Rechnung gestellt werden.

Deutscher institut

738512 12

Allgemeine bauaufsichtliche Zulassung

Nr. Z-9.1-681

Seite 8 von 12 | 16. Mai 2012

 ρ_k = charakteristischer Wert der Rohdichte des Holzes in kg/m³

 α = Winkel zwischen Schraubenachse und Holzfaserrichtung, 30° $\leq \alpha \leq$ 90°.

3.2.2.2 Beanspruchung auf Kopfdurchziehen oder Durchziehen des kopfseitigen Schraubengewindes

Aufgrund der Kopf-Durchziehgefahr und der Gefahr des Durchziehens des Schraubengewindes durch aufgeschraubte Holzbauteile oder Holzwerkstoffplatten darf der charakteristische Wert des Ausziehwiderstandes bei auf Herausziehen beanspruchten Schrauben höchstens mit

$$R_{ax,k} = \max \begin{cases} 10,0 \cdot d_k^2 \\ f_{1,0,k} \cdot I_{ef,k} \cdot d_1 \end{cases}$$
 (in N) (4)

Und für Schrauben zum Anschluss von Platten aus Holzwerkstoffen bei Plattendicken von ≥ 12 bis ≤ 20 mm höchstens mit

$$R_{ax,k} = 8.0 \cdot d_k^2 \qquad (in N)$$
 (5)

in Rechnung gestellt werden.

In den Gleichungen (4) und (5) sind d_1 und d_k der Gewindeaußendurchmesser bzw. Kopfdurchmesser der Schraube gemäß den Anlagen 1 bis 10 in mm und $l_{ef,k}$ die Gewindelänge im anzuschließenden Holzteil (kopfseitiger Schraubenbereich) in mm. Bei Zylinderkopfschrauben ist $d_k = 0$ anzunehmen. Die charakteristische Rohdichte ρ_k für Holzwerkstoffe nach Abschnitt 1.2 ist mit 380 kg/m³ in Rechnung zu stellen.

Beim Anschluss von Platten aus Holzwerkstoffen dürfen bei Plattendicken unter 12 mm der sich aus Gleichung (5) ergebende Wert, höchstens jedoch 400 N, in Rechnung gestellt werden, wobei die Mindestdicken nach Abschnitt 4.5 einzuhalten sind.

Für Stahlblech-Holz-Verbindungen sind die Gleichungen (4) und (5) nicht maßgebend.

Der aus dem charakteristischen Wert der Tragfähigkeit der Schraube auf Zug $(R_{t,u,k})$ nach Tabelle 3 ermittelte Bemessungswert der Schraubentragfähigkeit $(R_{t,u,d})$ darf nicht überschritten werden.

<u>Tabelle 3:</u> Charakteristische Werte der Zugtragfähigkeit R_{t,u,k}

Gewindeaußendurchmesser	Charakteristische Wei der Zugtragfähigkeit	
d₁ mm	R _{t,u,k} kN	
6,5	15,0	Deutsches Institut
8,0	23,0	für Bautechnik
10,0	25,0	

3.2.3 Verstärkung von querdruckbeanspruchten Holzbauteilen

Sofern unter einem Winkel 45° $\leq \alpha \leq$ 90° (α = Winkel zwischen Schraubenachse und Holzfaserrichtung) zur Faser gedrückte Holzbauteile durch Schrauben verstärkt werden, muss gewährleistet sein, dass die Druckkraft gleichmäßig auf alle Schrauben verteilt ist und dass die sich aus den Schraubenköpfen ergebende Pressung vom Auflagermaterial aufgenommen werden kann.

Der Bemessungswert der Tragfähigkeit für eine Druckfläche mit unter einem Winkel von $45^{\circ} \le \alpha \le 90^{\circ}$ (α = Winkel zwischen Schraubenachse und Holzfaserrichtung) eingedrehten Schrauben auf Hineindrücken darf mit

1.9.1-681#11

Allgemeine bauaufsichtliche Zulassung

Nr. Z-9.1-681

Seite 9 von 12 | 16. Mai 2012

$$R_{90,d} = \min \begin{cases} k_{c,90} \cdot B \cdot I_{ef,1} \cdot f_{c,90,d} + n \cdot \min \{ R_{ax,d}; R_{ki,d} \} \\ B \cdot I_{ef,2} \cdot f_{c,90,d} \end{cases}$$
 (6)

in Rechnung gestellt werden.

Hierin bedeuten:

k_{c,90} Querdruckbeiwert nach DIN 1052:2008-12, Abschnitt 10.2.4

B Auflagerbreite in mm

lef,1 wirksame Auflagerlänge nach DIN 1052:2008-12, Abschnitt 10.2.4 in mm

f_{c,90,d} Bemessungswert der Querdruckfestigkeit in N/mm²,

n Anzahl der Verstärkungsschrauben, $n = n_0 \cdot n_{90}$

n₀ Anzahl der in Faserrichtung hintereinander angeordneten Verstärkungsschrauben

n₉₀ Anzahl der rechtwinklig zur Faserrichtung hintereinander angeordneten Verstärkungsschrauben

 $R_{ax,d}$ Bemessungswert des Ausziehwiderstandes mit $R_{ax,k}$ nach den Gleichungen (2) und (3) in N,

R_{ki,d} Bemessungswert der Tragfähigkeit auf Ausknicken nach Tabelle 4 in N

l_{ef,2} wirksame Auflagerlänge in der Ebene der Schraubenspitzen in mm (siehe Anlagen 13 und 14)

 $I_{ef,2} = I_{ef} + (n_0 - 1) \cdot a_1 + \min(I_{ef}; a_{1,c})$ für Endauflager (siehe Anlage 14)

 $l_{ef,2}$ = 2 · l_{ef} + (n_0 - 1) · a_1 für Zwischenauflager (siehe Anlage 13)

lef Einschraubtiefe der Schrauben in mm (siehe Anlage 13 und 14)

a₁ Achsabstand der Schrauben untereinander in einer Ebene parallel zur Faserrichtung

a_{1,c} Abstand des Schwerpunktes des im Holz eingedrehten Schraubenteils von der Hirnholzfläche (siehe Anlage 11)

Tabelle 4: Bemessungswert der Tragfähigkeit auf Ausknicken R_{ki,d}

Charakteristische Rohdichte ρ _k kg/m³	Bemessungswert der Tragfähigkeit auf Ausknicken R _{ki,d} N	Bemessungswert der Tragfähigkeit auf Ausknicken R _{ki,d} N	Bemessungswert der Tragfähigkeit auf Ausknicken R _{ki,d} N	
	$d_1 = 6,5 \text{ mm}$	$d_1 = 8 \text{ mm}$	d ₁ = 10 mm	
310	8.400	10.900	14.700	
350	8.700	11.200	15.000	
380	8.800	11.500	15.300	
410	9.000	11.700	15.600	
450	9.100	12.000	15.800	

 ρ_k = charakteristische Rohdichte in kg/m³

Der Anschluss von Holzwerkstoffplatten durch auf Druck beanspruchte Schrauben, Gegenstand dieser Zulassung.

700510 10

Seite 10 von 12 | 16. Mai 2012

3.2.4 Kombinierte Beanspruchung

Bei Verbindungen, die sowohl durch eine Einwirkung in Richtung der Schraubenachse (F_{ax}) als auch rechtwinklig dazu (F_{la}) beansprucht werden, ist nachzuweisen, dass

$$\left(\frac{F_{ax,d}}{R_{ax,d} \text{ oder } R_{c,\alpha,d}}\right)^2 + \left(\frac{F_{la,d}}{R_{la,d}}\right)^2 \le 1$$
(7)

ist.

Hierin sind $F_{ax,d}$ und $F_{la,d}$ die Bemessungswerte der Einwirkungen in bzw. rechtwinklig zur Schraubenachse und $R_{ax,d}$ und $R_{la,d}$ die Bemessungswerte der Tragfähigkeit der Verbindungen im Falle der alleinigen Beanspruchung in bzw. rechtwinklig zur Schraubenachse.

4 Bestimmungen für die Ausführung

- 4.1 Für die Ausführung gilt DIN 1052 oder DIN EN 1995-1-1 in Verbindung mit DIN EN 1995-1-1/NA, soweit im Folgenden nichts anderes bestimmt ist. Für die Holzbauteile sind gegebenenfalls die allgemeinen bauaufsichtlichen Zulassungen zu beachten.
- 4.2 Die Schrauben dürfen nur zum Anschluss von Holzbauteilen aus Vollholz (Nadelholz) und Brettschichtholz, aus Furnierschichtholz, Brett- oder Balkenlagenholz, aus Holzwerkstoffen nach Abschnitt 1.2 oder von Stahlteilen an Holzbauteile aus Vollholz (Nadelholz) und Brettschichtholz oder aus Furnierschichtholz, Brett- oder Balkenlagenholz verwendet werden.

Die Schrauben dürfen für Verbindungen von Holzbauteilen nach allgemeinen bauaufsichtlichen Zulassungen verwendet werden, wenn nach der jeweiligen für das Holzbauteil erteilten allgemeinen bauaufsichtlichen Zulassung die Herstellung von Holzverbindungen mit allgemein bauaufsichtlich zugelassenen Schrauben zulässig ist.

Die Schrauben dienen weiterhin zur Erhöhung der Tragfähigkeit von Holzbauteilen rechtwinklig zur Faserrichtung.

Diese allgemeine bauaufsichtliche Zulassung umfasst nicht Anschlüsse an Holzwerkstoffe nach Abschnitt 1.2.

In Holzbauteile aus Vollholz, Brettschichtholz und aus Furnierschichtholz, Brett- oder Balkenlagenholz dürfen Schrauben mit einem Gewindeaußendurchmesser $d_1 \geq 8$ mm nur bei Verwendung der Holzarten Fichte, Kiefer oder Tanne eingeschraubt werden. Dies gilt sinngemäß auch für das Einschrauben in Holzbauteile nach allgemeinen bauaufsichtlichen Zulassungen.

4.3 Für das Einschrauben der Schrauben dürfen nur die vom Hersteller vorgeschriebenen Einschraubgeräte verwendet werden.

Die Schraubenlöcher in Stahlteilen müssen mit einem geeigneten Durchmesser vorgebohrt werden. Die Schraubenlöcher in zementgebundenen Spanplatten müssen mit 0,7 · d₁ vorgebohrt werden. In Holzbauteile sind die Schrauben entweder ohne Vorbohren einzuschrauben oder die Schraubenlöcher sind mit den Durchmessern nach Tabelle 5 vorzubohren.

<u>Tabelle 5:</u> Bohrlochdurchmesser

FABORO 61					
Gewindeaußendurchmesse	er d ₁ in mm	6,5	8,0	10,0	13
Kerndurchmesser	d _k in mm	4,5	5,2	6,0	Deutsches Institut für Bautechnik
Bohrlochdurchmesser	d _v in mm	4,0	5,0	6,0	

738512.12

Seite 11 von 12 | 16. Mai 2012

4.4 Mindestabstände

4.4.1 Beanspruchung rechtwinklig zur Schraubenachse (Abscheren)

Als Mindestabstände der Schrauben bei durch Norm geregelten nicht vorgebohrten Holzbauteilen müssen die Werte nach DIN 1052, wie bei Nägeln mit nicht vorgebohrten Nagellöchern, eingehalten werden.

Als Mindestabstände der Schrauben bei durch Norm geregelten vorgebohrten Holzbauteilen müssen die Werte nach DIN 1052, wie bei Nägeln mit vorgebohrten Nagellöchern, eingehalten werden. Als Schraubendurchmesser ist der Gewindeaußendurchmesser d₁ nach den Anlagen 1 bis 10 in Rechnung zu stellen.

Bei Douglasie sind für Schrauben in nicht vorgebohrten Löchern die Mindestabstände parallel zur Faserrichtung um 50 % zu erhöhen.

Bei Schrauben in nicht vorgebohrten Löchern mit einem Gewindeaußendurchmesser $d_1 \ge 8$ mm und einer Holzdicke von weniger als $5 \cdot d_1$ muss der Abstand vom beanspruchten und unbeanspruchten Rand parallel der Faserrichtung mindestens $15 \cdot d_1$ betragen.

Wenn der Abstand in Faserrichtung untereinander und zum Hirnholzende mindestens $25 \cdot d_1$ beträgt, darf der Abstand zum unbeanspruchten Rand rechtwinklig zur Faserrichtung auch bei Holzdicken unter $5 \cdot d_1$ auf $3 \cdot d_1$ verringert werden.

Für die Mindestabstände bei Holzbauteilen nach allgemeinen bauaufsichtlichen Zulassungen gelten die Bestimmungen der allgemeinen bauaufsichtlichen Zulassungen.

4.4.2 Beanspruchung in Richtung der Schraubenachse

Bei planmäßig ausschließlich in Schaftrichtung beanspruchten Schrauben dürfen bei Einhaltung einer Mindestholzdicke von $t=10,0\cdot d_1$ und einer Mindestholzbreite von $b=8\cdot d_1$, jedoch nicht weniger als 60 mm, für Schrauben mit Bohrspitze oder bei Eindrehen der Schrauben in vorgebohrten Schraubenlöchern auch folgende Mindestabstände zugrunde gelegt werden:

Achsabstand a_1 der Schrauben untereinander in einer Ebene parallel zur Faserrichtung:

 $a_1 = 5 \cdot d_1$

Achsabstand a₂ der Schrauben untereinander rechtwinklig zu einer Ebene parallel zur Faserrichtung:

 $a_2 = 5 \cdot d_1$

Abstand a_{1,c} des Schwerpunktes des im Holz eingedrehten Schraubenteils von der Hirnholzfläche:

 $a_{1,c} = 5 \cdot d_1$

Abstand a_{2,c} des Schwerpunktes des im Holz eingedrehten Schraubenteils von der Seitenholzfläche:

 $a_{2.c} = 3 \cdot d_1$

Der Achsabstand a_2 darf bis auf 2,5 · d_1 verringert werden, wenn für jede Schraube eine Anschlussfläche $a_1 \cdot a_2 = 25 \cdot d_1^2$ eingehalten ist.

Bei planmäßig ausschließlich in Schaftrichtung beanspruchten Schrauben dürfen bei Einhaltung einer Mindestholzdicke von $t=12,5\cdot d_1$ und einer Mindestholzbreite von $b=8\cdot d_1$, jedoch nicht weniger als 60 mm, für Schrauben ohne Bohrspitze bei Eindrehen der Schrauben in nicht vorgebohrten Schraubenlöchern auch folgende Mindestabstande zugrunde gelegt werden:

Achsabstand a_1 der Schrauben untereinander in einer Ebene parallel zur Faserrichtung:

 $a_1 = 5 \cdot d_1$

Seite 12 von 12 | 16. Mai 2012

Achsabstand a₂ der Schrauben untereinander rechtwinklig zu einer Ebene parallel zur Faserrichtung:

 $a_2 = 5 \cdot d_1$

Abstand a_{1,c} des Schwerpunktes des im Holz eingedrehten Schraubenteils von der Hirnholzfläche:

 $a_{1,c} = 10 \cdot d_1$

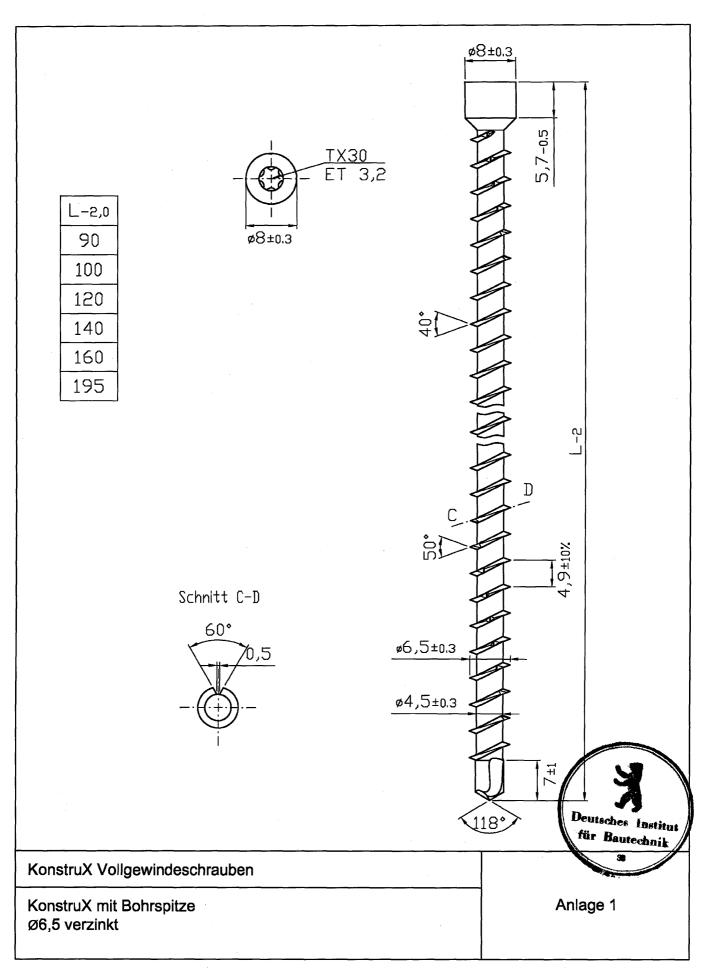
Abstand a_{2,c} des Schwerpunktes des im Holz eingedrehten Schraubenteils von der Seitenholzfläche:

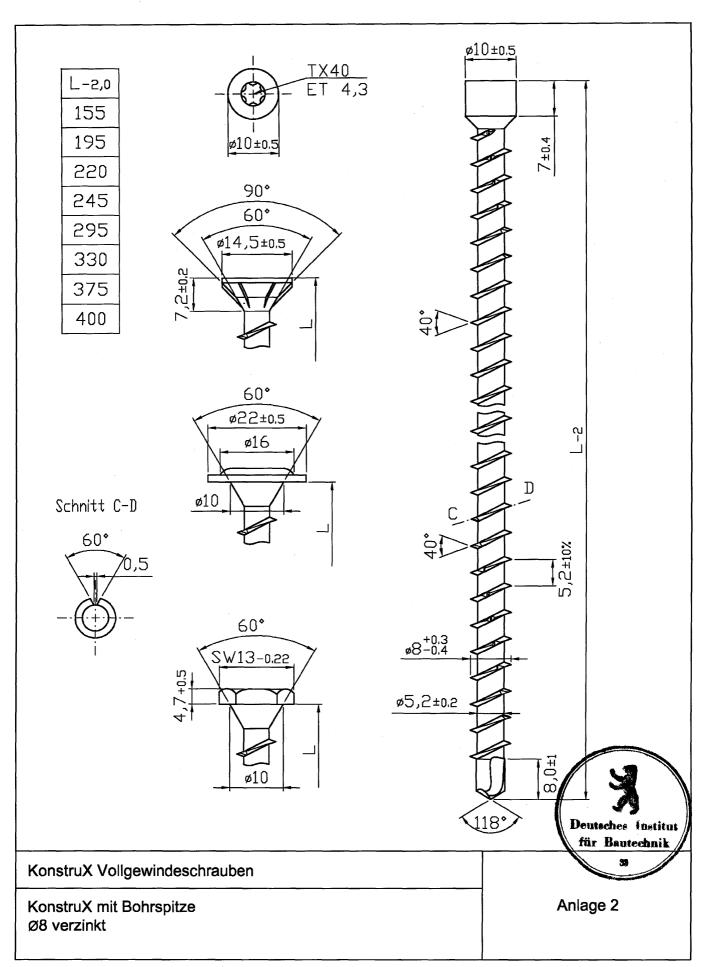
 $a_{2,c} = 4 \cdot d_1$

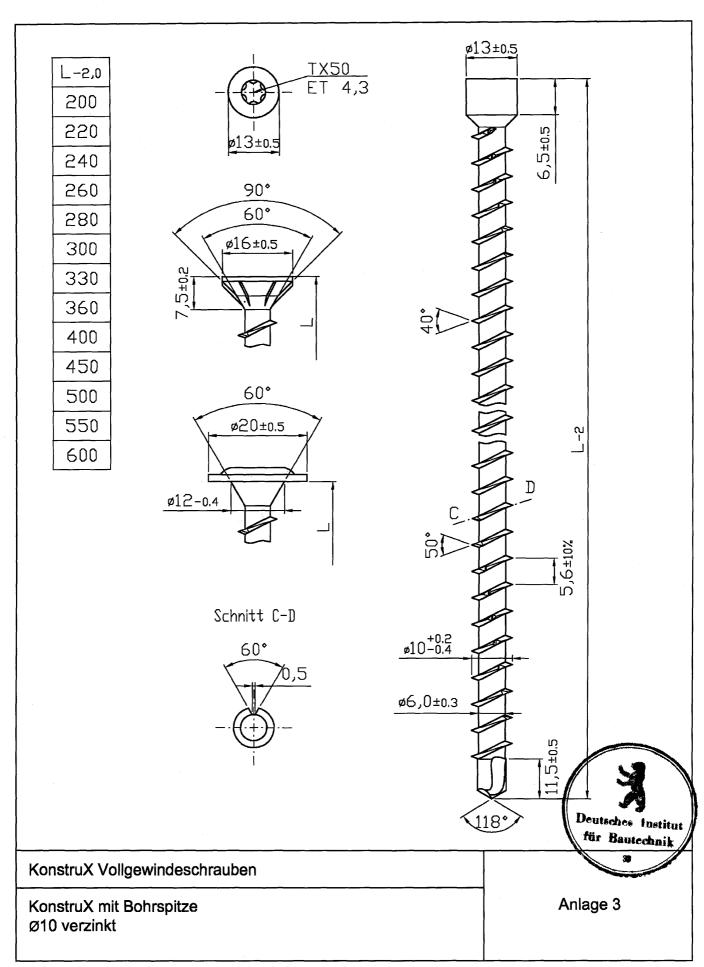
Der Achsabstand a_2 darf bis auf $2,5 \cdot d_1$ verringert werden, wenn für jede Schraube eine Anschlussfläche $a_1 \cdot a_2 = 25 \cdot d_1^2$ eingehalten ist.

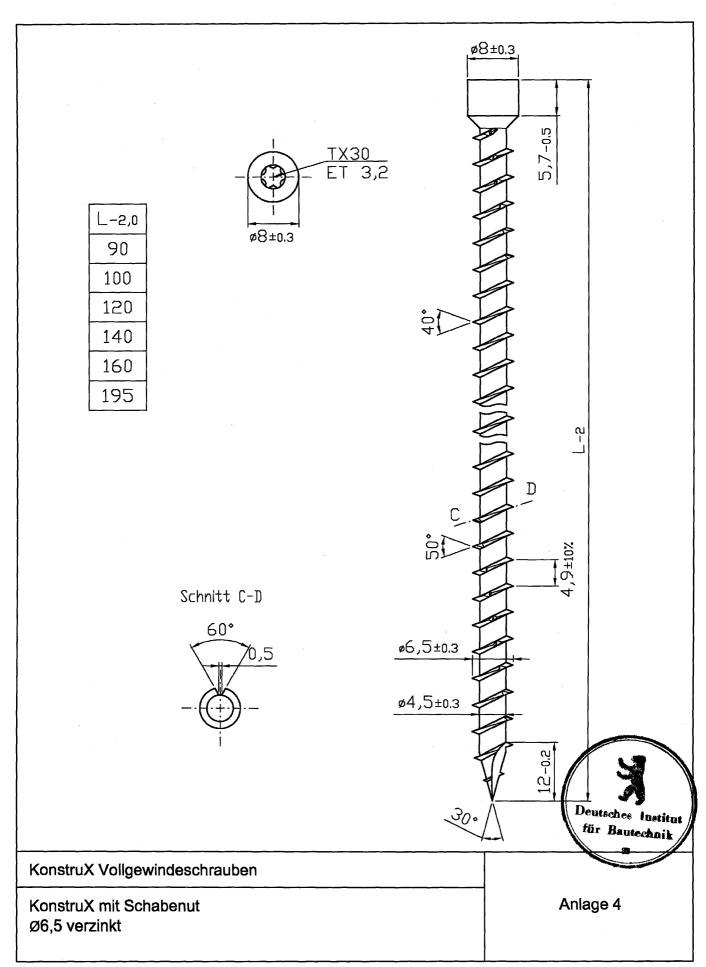
Werden gekreuzte Schraubenpaare angeordnet, so sind als Achsabstände zwischen den sich kreuzenden Schrauben mindestens $1,5 \cdot d_1$ einzuhalten.

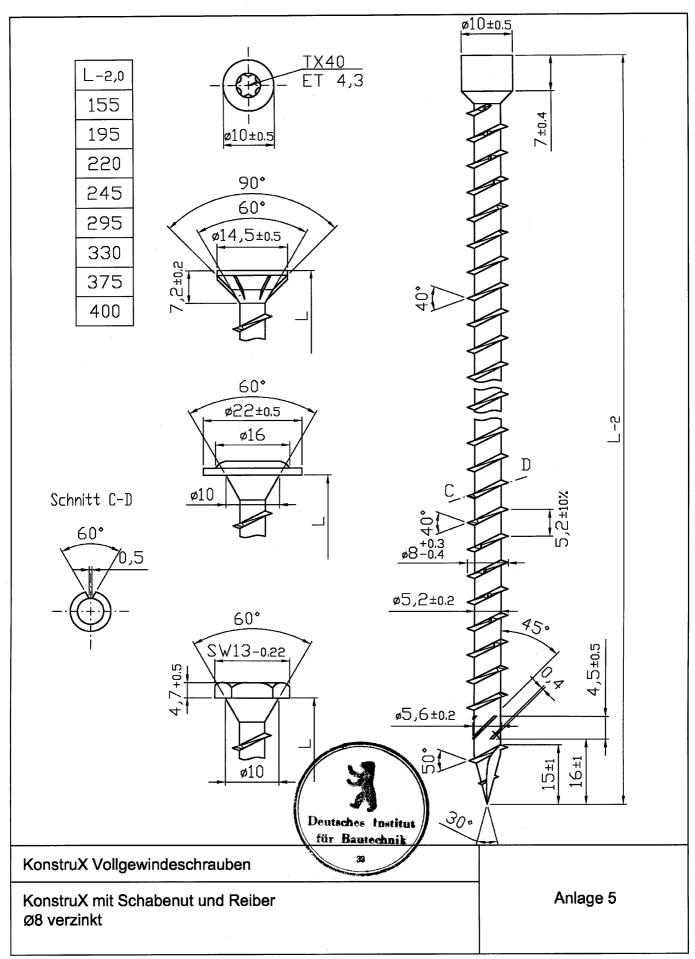
4.5 Die Dicke der Holzwerkstoffplatten muss mindestens $1,2 \cdot d_1$ betragen (d_1 = Gewindeaußendurchmesser der Schraube).

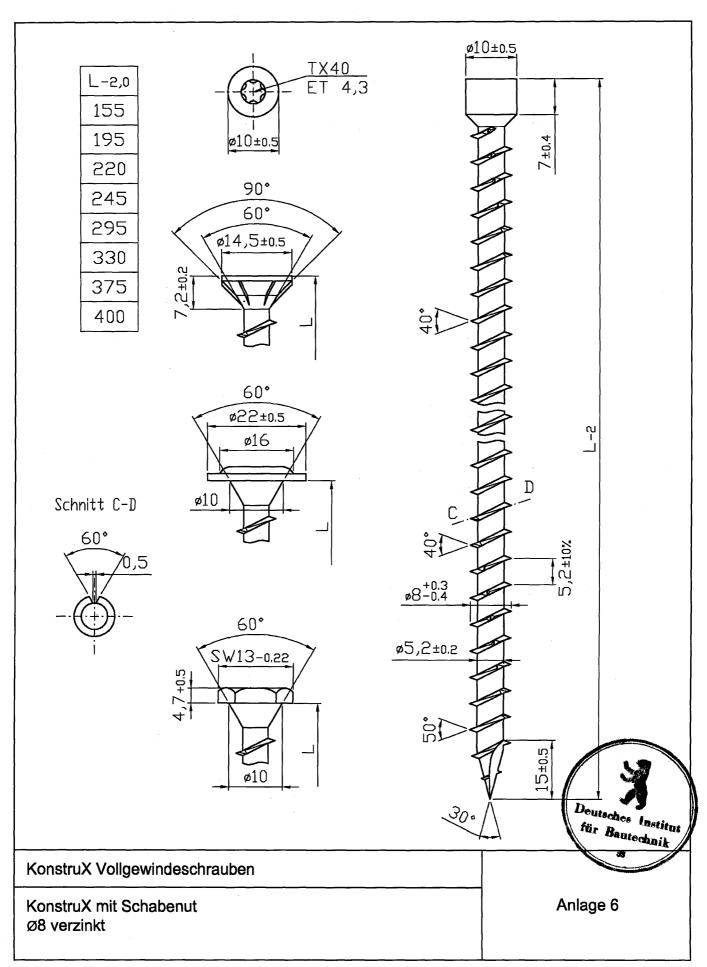

Darüber hinaus muss die Plattendicke mindestens 10 mm bei gipsgebundenen Spanplatten betragen.

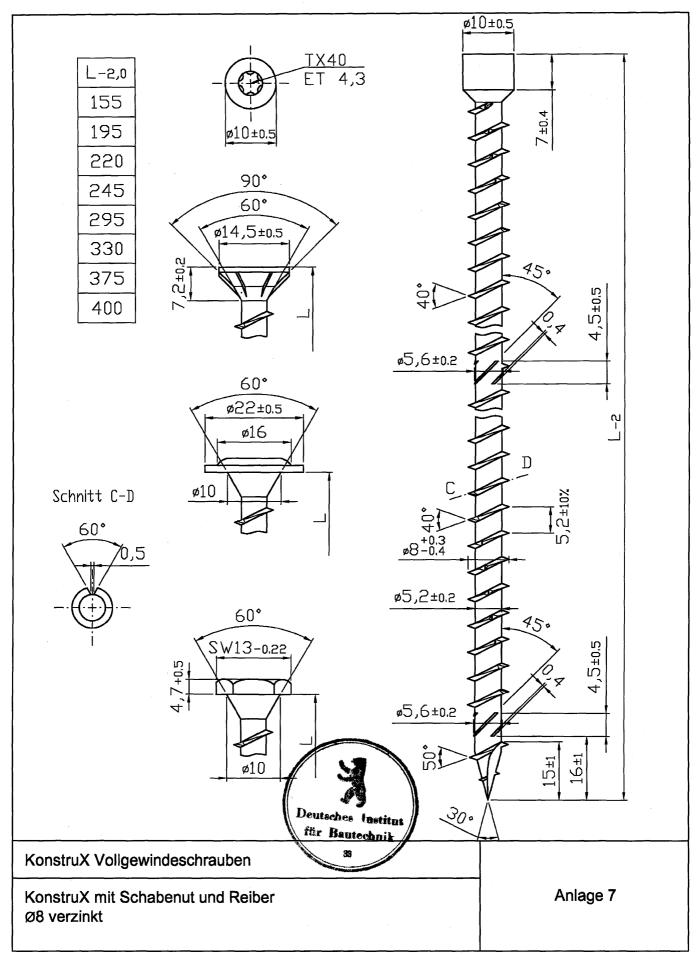

Bei Schrauben in nicht vorgebohrten Löchern mit einem Gewindeaußendurchmesser $d_1 \le 8$ mm muss die Dicke der Holzbauteile mindestens 30 mm und bei Schrauben mit $d_1 = 10$ mm mindestens 40 mm betragen.

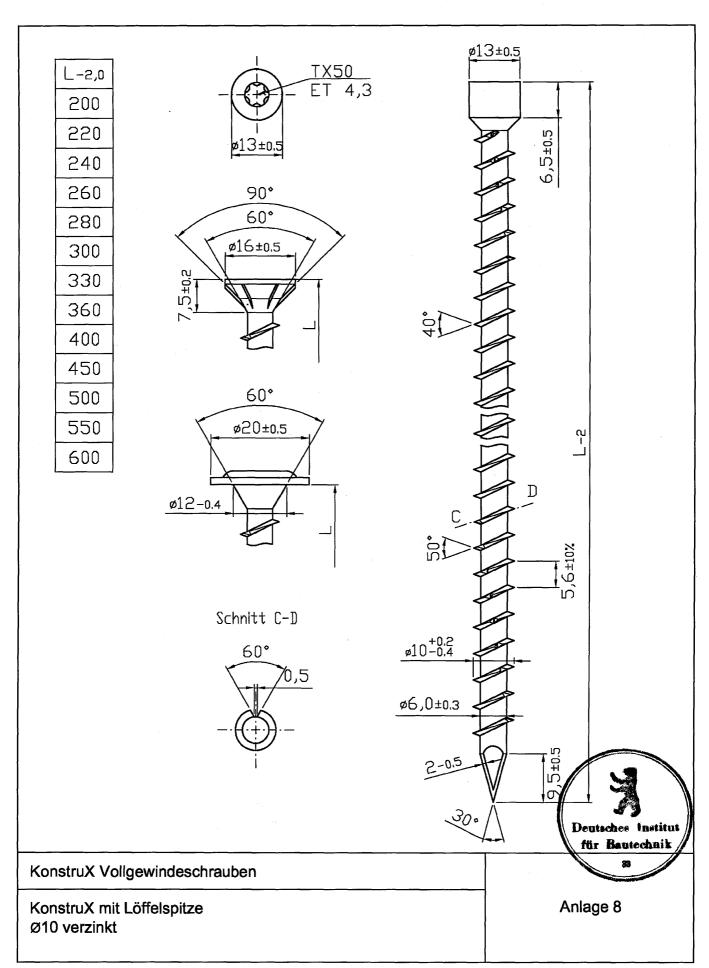

Für die Mindestdicken von Holzbauteilen nach allgemeinen bauaufsichtlichen Zulassungen gelten die Bestimmungen der allgemeinen bauaufsichtlichen Zulassungen.

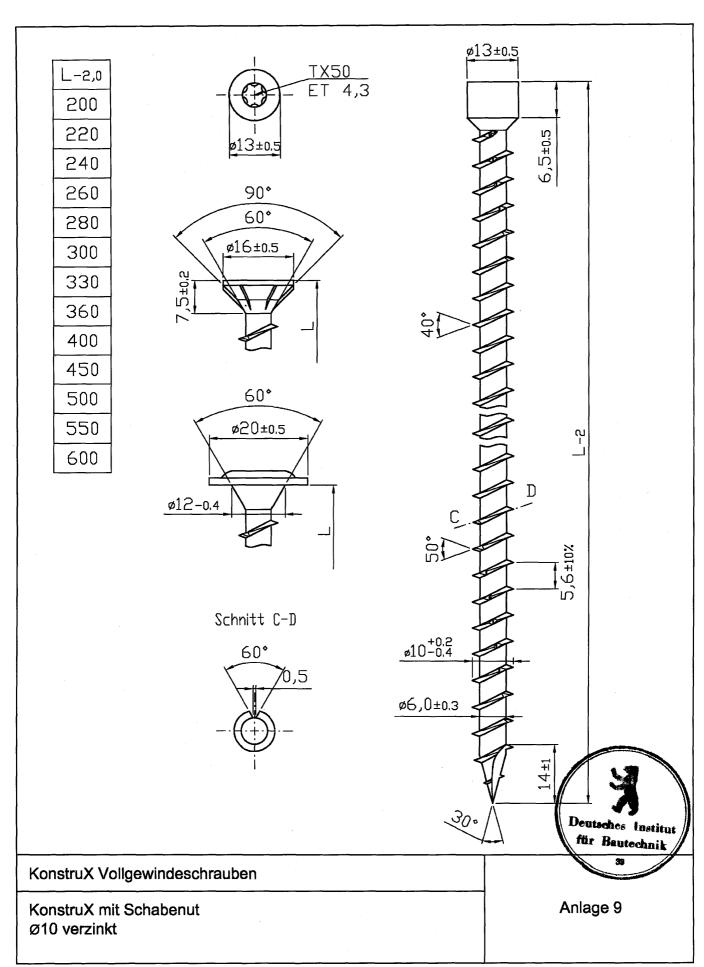

Reiner Schäpel Referatsleiter

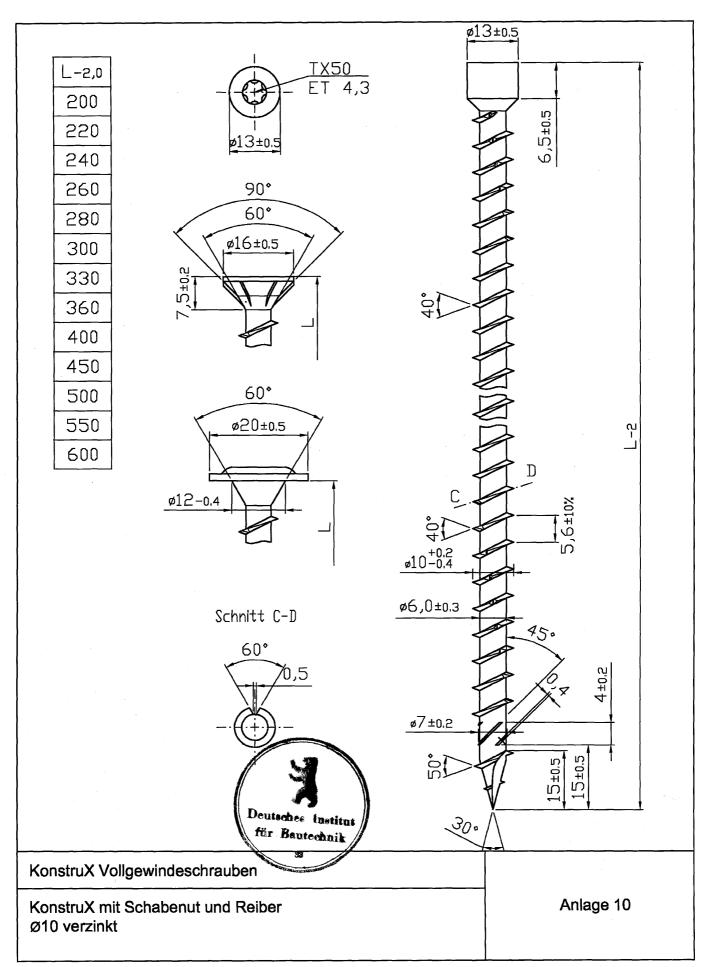


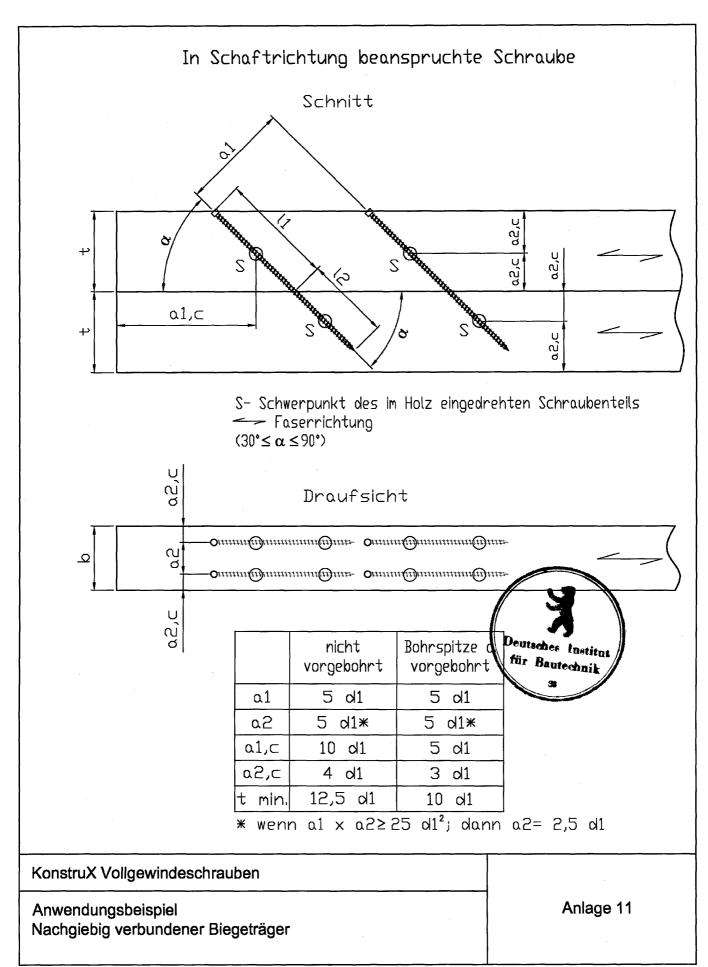


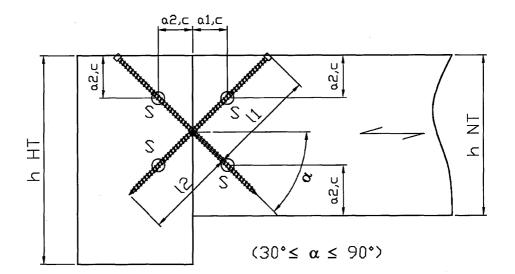




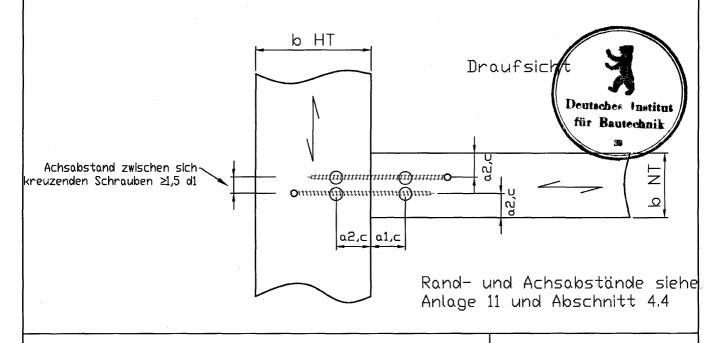








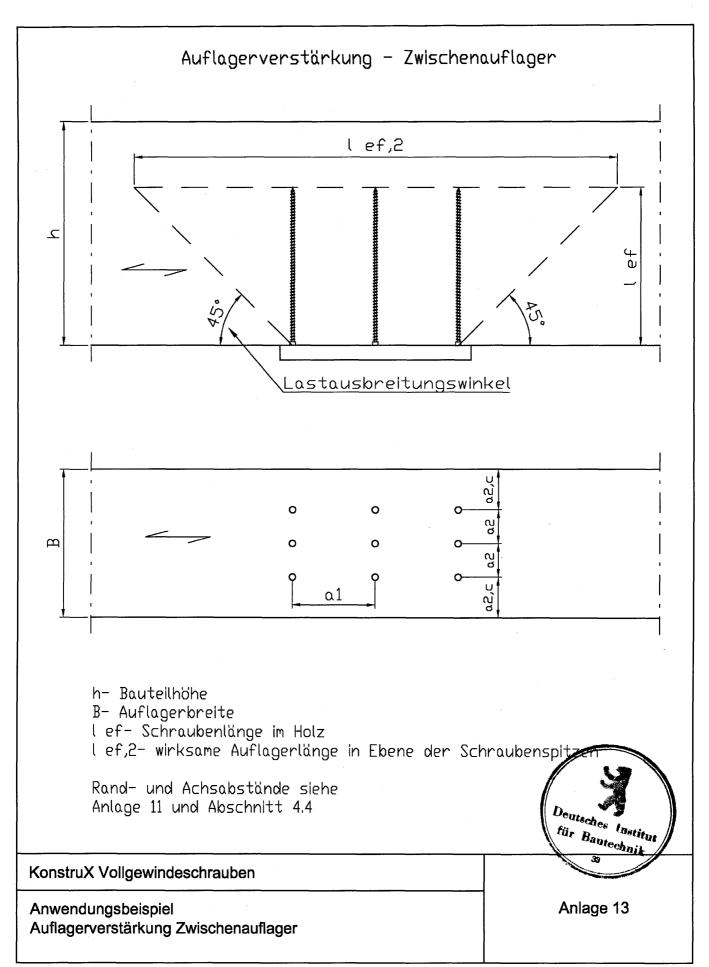
In Schaftrichtung beanspruchte Schraube


Schnitt

HT- Hauptträger

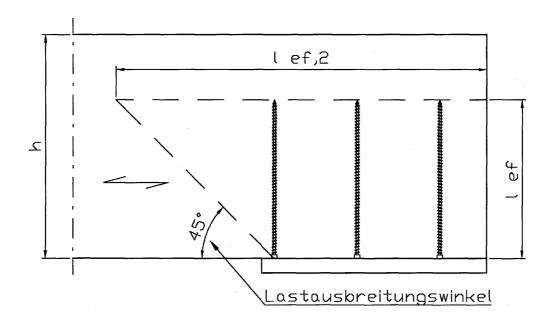
NT- Nebenträger

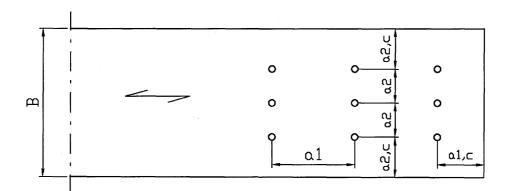
S- Schwerpunkt des im Holz eingedrehten Schraubenteils Faserrichtung



KonstruX Vollgewindeschrauben

Anwendungsbeispiel Haupt-/Nebenträger-Anschluss


Anlage 12



Auflagerverstärkung - Endauflager

h- Bauteilhöhe

B- Auflagerbreite

l ef- Schraubenlänge im Holz

l ef,2- wirksame Auflagerlänge in Ebene der Schraubenspitz

Rand- und Achsabstände siehe Anlage 11 und Abschnitt 4.4

KonstruX Vollgewindeschrauben

Anwendungsbeispiel Auflagerverstärkung Endauflager Anlage 14